Laser-Frequency Stabilization via a Quasimonolithic Mach-Zehnder Interferometer with Arms of Unequal Length and Balanced dc Readout

نویسندگان

  • Oliver Gerberding
  • Katharina-Sophie Isleif
  • Moritz Mehmet
  • Karsten Danzmann
  • Gerhard Heinzel
چکیده

Low-frequency high-precision laser interferometry is subject to excess laser-frequency-noise coupling via arm-length differences which is commonly mitigated by locking the frequency to a stable reference system. This approach is crucial to achieve picometer-level sensitivities in the 0.1-mHz to 1-Hz regime, where laser-frequency noise is usually high and couples into the measurement phase via arm-length mismatches in the interferometers. Here we describe the results achieved by frequency stabilizing an external cavity diode laser to a quasimonolithic unequal arm-length Mach-Zehnder interferometer readout at midfringe via balanced detection. We find this stabilization scheme to be an elegant solution combining a minimal number of optical components, no additional laser modulations, and relatively low-frequencynoise levels. The Mach-Zehnder interferometer is designed and constructed to minimize the influence of thermal couplings and to reduce undesired stray light using the optical simulation tool IFOCAD. We achieve frequency-noise levels below 100 Hz= ffiffiffiffiffiffi

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laser frequency stabilisation via quasi-monolithic, unequal arm-length Mach-Zehnder interferometer with balanced DC readout

Low frequency high precision laser interferometry is subject to excess laser frequency noise coupling via arm-length differences which is commonly mitigated by locking the frequency to a stable reference system. This is crucial to achieve picometer level sensitivities in the 0.1mHz to 1Hz regime, where laser frequency noise is usually high and couples into the measurement phase via arm-length m...

متن کامل

Atom trapping in an interferometrically generated bottle beam trap.

We demonstrate an optical bottle beam trap created by interfering two fundamental Gaussian beams with different waists. The beams are derived from a single laser source using a Mach-Zehnder interferometer whose arms have unequal magnifications. Destructive interference of the two beams from the Mach-Zehnder leads to a three-dimensional intensity null at the mutual focus of the beams. We demonst...

متن کامل

A Review of Optical Routers in Photonic Networks-on-Chip: A Literature Survey

Due to the increasing growth of processing cores in complex computational systems, all the connection converted bottleneck for all systems. With the protection of progressing and constructing complex photonic connection on chip, optical data transmission is the best choice for replacing with electrical interconnection for the reason of gathering connection with a high bandwidth and insertion lo...

متن کامل

Experimental demonstration of deep frequency modulation interferometry.

Experiments for space and ground-based gravitational wave detectors often require a large dynamic range interferometric position readout of test masses with 1 pm/√Hz precision over long time scales. Heterodyne interferometer schemes that achieve such precisions are available, but they require complex optical set-ups, limiting their scalability for multiple channels. This article presents the fi...

متن کامل

Stabilized fiber-optic Mach-Zehnder interferometer for carrier-frequency rejection.

We have demonstrated stabilization of a fiber-optic Mach-Zehnder interferometer, with a centimeter-scale path difference, to the transmission minimum for the carrier wave of a frequency-modulated laser beam. A time-averaged extinction of 32 dB, limited by the bandwidth of the feedback, was maintained over several hours. The interferometer was used to remove the carrier wave from a 780 nm laser ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017